CS 7638: Artificial Intelligence for Robotics

Course Creator

Sebastian Thrun
Sebastian Thrun
Creator, Instructor, Co-Founder of Udacity


Course Instructor

Jay Summet
Senior Lecturer


In Artificial Intelligence for Robotics (formerly CS 8803 O01), learn from Sebastian Thrun, the leader of Google and Stanford's autonomous driving team, how to program all the major systems of a robotic car. This class will teach students basic methods in Artificial Intelligence, including: probabilistic inference, planning and search, localization, tracking and control, all with a focus on robotics. Extensive programming examples and assignments will apply these methods in the context of building self-driving cars.  

By the middle of the course, students will leverage what they have learned by solving the problem of a runaway robot that they must chase and hunt down! Students will also be expected to complete six problem sets, and multiple other projects that apply the methods learned in this class.


Students should know Python or have enough experience with other languages to pick up what they need on their own. Check out Udacity's Introductory CS class (in Python) if you'd like some review. Students should also have strong knowledge of probability and linear algebra (see Prof. Thrun's free Udacity course on statistics).

For prospective students who are unsure if their computer science experience provides sufficient background for this course, the questions below will help gauge preparedness. If you answer "no" to any of the following questions, it may be beneficial to refresh your knowledge of this material prior to taking CS 7638:

  • Do you have programming experience, preferably in Python?
  • Do you have a strong understanding of linear algebra (undergraduate-level)?
  • Do you have a strong understanding of probability (undergraduate-level)?
  • Have you taken any courses (either from your undergraduate studies or MOOCs) in machine learning, computer vision or robotics?

Course Preview

Lesson Preview


  • 6 Problem Sets
  • 3 projects
  • 2-3 Mini-Projects
  • Extra Credit: Extra credit may be awarded for completing Hardware Challenges and for exceptional helpfulness on the class Piazza forum.
  • Grades for the projects will be posted to your student account on Canvas.

Assignment Submission and Late Policy

  • All assignments are submitted via Canvas.
  • No late work accepted. The specific course schedule will be announced by the instructor and/or TA at the beginning of the term.

Required Course Readings

Website readings with an optional textbook supplement listed below:

  • Optional enhancement text - Probabilistic Robotics. Sebastian Thrun, Wolfram Burgard & Dieter Fox. MIT Press. 2005.

Minimum Technical Requirements

  • Browser and connection speed: An up-to-date version of Chrome or Firefox is strongly recommended. We also support Internet Explorer 9 and the desktop versions of Internet Explorer 10 and above (not the metro versions). 2+ Mbps recommended; at minimum 0.768 Mbps download speed
  • Operating system: -PC: Windows XP or higher with latest updates installed -Mac: OS X 10.6 or higher with latest updates installed -Linux: Any recent distribution that has the supported browsers installed

Other Info

Background Materials on Statistics
  • Prof. Thrun teaches a free introductory course on Udacity called Statistics 101.
  • If you prefer written material, Think Bayes is available online. It has some great examples and the text is approachable.
Office Hours

Dr. Summet will hold weekly video office hours, and Professor Thrun will hold 2-3 guest office hours through Google Hangouts on Air once each month. Students submit questions via the Piazza website.

Academic Honesty

All Georgia Tech students are expected to uphold the Georgia Tech Academic Honor Code.